Homework 4. Linear Algebra. Spring 2022. Prof. Pineiro
Print Name: \qquad

1. Consider the linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
T(x)=\left(\begin{array}{ccc}
1 & 2 & -1 \\
-2 & 5 & 4
\end{array}\right) x
$$

a. Determine if T is one-to-one.
b. Determine if T is onto.
2. Let V be the vector space of 2×2-matrices. Recall that the trace of a matrix, written $\operatorname{Tr}(A)$, is the sum of its diagonal entries:

$$
\operatorname{Tr}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+d
$$

a. Prove that the subset S of V consisting of matrices of trace 0 is a subspace of V.
b. Find a basis for S.
c. What is the dimension of S ?
3. Consider the linear map $f: V \longrightarrow V^{\prime}$ between the finite dimensional vector spaces V and V^{\prime}.
a. Show that if $\operatorname{dim}(V)>\operatorname{dim}\left(V^{\prime}\right)$ the map cannot be injective.
b. Show that if $\operatorname{dim}(V)<\operatorname{dim}\left(V^{\prime}\right)$ the map cannot be surjective.
c. Find an example of an injective linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$.
d. Find an example of a surjective linear map $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$.
d. Find an example of a bijective linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$.
d. Find an example of a non-bijective linear map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$.
4. Given the matrix $A=\left(\begin{array}{cc}9 & -4 \\ 12 & -5\end{array}\right)$.
a. Find the eigenvalues of A.
b. Find a basis made of eigenvectors.
c. Find a matrix P such that $P^{-1} A P=D$.
5. Given the symmetric matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1\end{array}\right)$.
a. Find the eigenvalues of A.
b. Find a basis of eigenvectors.
c. Find an orthogonal basis made of eigenvectors.
d. Find an orthogonal matrix P such that $P^{-1} A P=D$.

